
Audit Report
August, 2023

For

QuillAudits

https://www.quillaudits.com/smart-contract-audit

www.quillaudits.com

Executive Summary

Checked Vulnerabilities

Techniques and Methods

Manual Testing

. .

. .…. .

. .

. .……….. .

. .

. .………….. .

. .

. .

Table of Content

01

04

05

06

06

07

08

10

10

11

12

A. Common Issues

B. Contract - Aoc2

C. Contract - NFTree

Functional Tests

Automated Tests

Closing Summary

About QuillAudits

Carbify - Audit Report

www.quillaudits.com

Executive Summary

Carbify

https://www.carbify.io/

Aco2 is an ERC20 token that allows assigned addresses to either
mint or burn tokens. It inherits the Openzeppelin Access Control
Contract to achieve the role assignment.

NFTree is an ERC721 upgradable contract inheriting
Initializable,ERC721Upgradable,ERC721Enumerable,
ERCBurnableUpgradable, AccessControlUpgradable from
Openzeppelin library. All these aid in achieving the upgradability
of the contract, the burning of tokens by assigned BURNER_ROLE,
enumeration of minted tokens, and also for the designation of
roles. The NFTree contract allows the MINTER to mint one or batch
of tokens into an account and with an approval of the token
owner, the BURNER can burn an ERC721 token.

https://github.com/Carbify-official/smart-contracts

Aco2 and NFTree

31638cf6e94272066f8685d160dc22d450e5e056

Solidity

Polygon and Ethereum

Manual Analysis, Functional Testing, Automated Testing

16 August 2023 - 23 August 2023

23 August 2023

24 August 2023

702730c1b969217b027ffcd9633c701cb3c4c945

Project Name

Project URL

Overview

Audit Scope

Contracts in Scope

Commit Hash

Language

Blockchain

Method

Review 1

Updated Code Received

Review 2

Fixed In

01

Carbify - Audit Report

https://www.carbify.io/
https://github.com/Carbify-official/smart-contracts

www.quillaudits.com

High

Open Issues

Resolved Issues

Acknowledged Issues

Partially Resolved Issues

Low

0

0

00

0

0

0 3

0

0

0

0

0

0

0

0

Medium Informational

3
Issues Found

High Medium

Low Informational

Executive Summary

02

Carbify - Audit Report

www.quillaudits.com

Medium

The issues marked as medium severity usually arise because of errors and deficiencies in the
smart contract code. Issues on this level could potentially bring problems, and they should
still be fixed.

Low

Low-level severity issues can cause minor impact and or are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Informational

These are severity issues that indicate an improvement request, a general question, a
cosmetic or documentation error, or a request for information. There is low-to-no impact.

High

A high severity issue or vulnerability means that your smart contract can be exploited. Issues
on this level are critical to the smart contract’s performance or functionality, and we
recommend these issues be fixed before moving to a live environment.

Types of Severities

Open
Security vulnerabilities identified that must be resolved and are currently unresolved.

Resolved
These are the issues identified in the initial audit and have been successfully fixed.

Acknowledged
Vulnerabilities which have been acknowledged but are yet to be resolved.

Partially Resolved
Considerable efforts have been invested to reduce the risk/impact of the security issue, but
are not completely resolved.

Types of Issues

03

www.quillaudits.com

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

Checked Vulnerabilities

04

www.quillaudits.com

Techniques and Methods

Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour mentioned in the
whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the smart contracts.

Structural Analysis
In this step, we have analysed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Static Analysis
Static analysis of smart contracts was done to identify contract vulnerabilities. In this step, a
series of automated tools are used to test the security of smart contracts.

Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually analysed,
their logic was checked and compared with the one described in the whitepaper. Besides, the
results of the automated analysis were manually verified.

Gas Consumption
In this step, we have checked the behaviour of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code to
reduce gas consumption.

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Solhint, Mythril, Slither, Solidity statistic analysis.

05

www.quillaudits.com

Manual Testing

High Severity Issues

A. Common Issues

06

No issues found

No issues found

No issues found

Medium Severity Issues

Informational Issues

A.1 Unlocked pragma (pragma solidity ^0.8.17)

Status

Remediation

Description
Contracts should be deployed with the same compiler version and flags that they have been
tested with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Here all the in-scope contracts have an unlocked pragma, it is recommended to lock the same.
Moreover, we strongly suggest not to use experimental Solidity features (e.g., pragma
experimental ABIEncoderV2) or third-party unaudited libraries. If necessary, refactor the
current code base to only use stable features.

Resolved

Low Severity Issues

www.quillaudits.com 07

High Severity Issues

B. Contract - Aoc2

No issues found

No issues found

No issues found

Medium Severity Issues

Low Severity Issues

A.2 Removed Unused Interfaces in Both Contracts

Status

Remediation

Description
There are a few imports made in both contracts to be used but were not called within them.
In Aoc2 - ICRC.sol
In NFTree - IERC721EnumerableUpgradable and ITree

Remove all unused interfaces in both contracts.

Resolved

www.quillaudits.com 08

Informational Issues

Informational Issues

C.1 Additional Check for Zero Address Cost High Gas Consumption

Status

Remediation

Description
In the burn and mint functions, there were two checks to prevent that the to address and
account addresses are not a null address and the second check is to prevent minting and
burning of zero amount. While the second check is appropriate, the present of the first check
will hike the cost of gas for calling these functions. The _mint and _burn functions from the
ERC20 openzeppelin library already has this check to prevent minting or burning

It is recommended to remove the first check that prevents the null address as inputs for both
burn and mint functions in order to save gas.

Resolved

High Severity Issues

C. Contract - NFTree

No issues found

No issues found

No issues found

No issues found

Medium Severity Issues

Low Severity Issues

www.quillaudits.com 09

General Recommendation

In the NFTree contract, it allows the minter to batch mint as many tokens as possible but with a
check present to prevent it does not mint beyond the initial supply indicated in the Batch struct.
This is a good way to prevent running into an out of gas error when the minter passes a higher
value greater than the batch initial supply. However, when the initial supply of the batch is still
high, it will cause the out of gas error. It is recommended that the initial supply value of a batch
be set to a value enough to cover for gas.

www.quillaudits.com 10

Should get the name of the token
should get the symbol/tinker of the token
should get the decimal of the token
should get the total supply of the token after minted by the minter
should get balance of the owner when contract is deployed
should transfer tokens to other address
should approve another account to spend token
should mint and increase total supply
Should deploy the NFTree and ensure it cannot be initialized more than once
Should batch mint tokens to the provided address
Should get all the tokens owned by an address
Should revert when addresses without the MINTER and BURNER role call principal functions
Should return the appropriate baseURI sets with the batch struct

Some of the tests performed are mentioned below:

Functional Testing

No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

Automated Tests

www.quillaudits.com 11

Disclaimer

QuillAudits Smart contract security audit provides services to help identify and mitigate
potential security risks in Carbify smart contracts. However, it is important to understand that
no security audit can guarantee complete protection against all possible security threats.
QuillAudits audit reports are based on the information provided to us at the time of the audit,
and we cannot guarantee the accuracy or completeness of this information. Additionally, the
security landscape is constantly evolving, and new security threats may emerge after the
audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of Carbify smart contracts. One audit is not enough to guarantee
complete protection against all possible security threats. It is important to implement proper
risk management strategies and stay vigilant in monitoring your smart contracts for potential
security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur
subsequent to and despite using our audit services.. It is the responsibility of the Carbify to
implement the recommendations provided in our audit reports and to take appropriate steps
to mitigate potential security risks.

In this report, we have considered the security of Carbify. We performed our audit according
to the procedure described above.

Some issues of informational severity were found. Some suggestions and best practices are
also provided in order to improve the code quality and security posture.

Summary

www.quillaudits.com

850+
Audits Completed

800K
Lines of Code Audited

$30B
Secured

About QuillAudits

QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies.
We are a team of dedicated blockchain security experts and smart contract auditors

determined to ensure that Smart Contract-based Web3 projects can avail the latest and best
security solutions to operate in a trustworthy and risk-free ecosystem.

Follow Our Journey

https://www.quillaudits.com/smart-contract-audit
https://twitter.com/quillaudits
https://medium.com/quillhash/smart-contract-audit/home
https://www.reddit.com/r/QuillAudits/
https://t.me/QuillAudits
https://www.linkedin.com/showcase/quillaudits
https://discord.gg/WYb8Gfz8yy
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

Audit Report
August, 2023

www.quillaudits.com

audits@quillhash.com

Canada, India, Singapore, UAE, UK

QuillAudits

For

https://www.quillaudits.com/smart-contract-audit
https://www.quillaudits.com/smart-contract-audit

